Background noise improves gap detection in tonically inhibited inferior colliculus neurons.

نویسندگان

  • Willard W Wilson
  • Joseph P Walton
چکیده

Single units in the inferior colliculus (IC) in the C57Bl/6 inbred mouse strain were tested for their temporal processing ability as measured by their minimum gap threshold (MGT), the shortest silent interval in an ongoing white-noise stimulus which a unit could encode. After ascertaining the MGT in quiet, units were re-tested in various levels of background noise. The focus of this report is on two types of tonically responding units found in the IC. Tonically inhibited (TI) units encoded gaps poorly in quiet and low levels of background noise as compared with tonically excited (TE) units. In quiet, the MGTs of TI units were about an order of magnitude longer than the MGTs typical of TE units. Paradoxically, gap encoding was improved in high levels of background noise for TI units. This result is unexpected from the traditional viewpoint that noise necessarily degrades signal processing and is inconsistent with psychophysical observations of diminished speech and gap detection processing in noisy environments. We believe the improved feature detection described here is produced by the adaptation of inhibitory input. Continuous background noise would diminish the inhibitory efficacy of the gap stimulus by increasing the latency to the onset of inhibition and decreasing its duration. This would allow more spontaneous activity to "bleed through" the silent gap, thus signaling its presence. Improved feature detection in background noise resulting from inhibitory adaptation would seem an efficient neural mechanism and one that might be generally useful in other signal detection tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in the Response Properties of Inferior Colliculus Neurons Relating to Tinnitus

Tinnitus is often identified in animal models by using the gap prepulse inhibition of acoustic startle. Impaired gap detection following acoustic over-exposure (AOE) is thought to be caused by tinnitus "filling in" the gap, thus, reducing its salience. This presumably involves altered perception, and could conceivably be caused by changes at the level of the neocortex, i.e., cortical reorganiza...

متن کامل

Neural correlates of binaural masking level difference in the inferior colliculus of the barn owl (Tyto alba).

Humans and animals are able to detect signals in noisy environments. Detection improves when the noise and the signal have different interaural phase relationships. The resulting improvement in detection threshold is called the binaural masking level difference. We investigated neural mechanisms underlying the release from masking in the inferior colliculus of barn owls in low-frequency and hig...

متن کامل

Detectability index measures of binaural masking level difference across populations of inferior colliculus neurons.

In everyday life we continually need to detect signals against a background of interfering noise (the "cocktail party effect"): a task that is much easier to accomplish using two ears. The binaural masking level difference (BMLD) measures the ability of listeners to use a difference in binaural attributes to segregate sound sources and thus improve their discriminability against interfering noi...

متن کامل

Detection of auditory signals by frog inferior collicular neurons in the presence of spatially separated noise.

Detection of auditory signals by frog inferior collicular neurons in the presence of spatially separated noise. J. Neurophysiol. 80: 2848-2859, 1998. Psychophysical studies have shown that the ability to detect auditory signals embedded in noise improves when signal and noise sources are widely separated in space; this allows humans to analyze complex auditory scenes, as in the cocktail-part ef...

متن کامل

Simulated motion enhances neuronal selectivity for a sound localization cue in background noise.

In nature, sound sources move and signals are accompanied by background noise. Noting that motion helps the perception of visual stimuli, we tested whether motion similarly facilitates the detection of acoustic targets, at the neuronal level. Auditory neurons in the central nucleus of the barn owl's inferior colliculus (ICc), due to their selectivity for interaural phase difference (delta phi),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 87 1  شماره 

صفحات  -

تاریخ انتشار 2002